Towards an Incremental Dataset of Proofs

HANNELI C. A. TAVANTE, McGill University

In this work, we describe an approach for a data-centered user study for proof assistant tools, targeting jsCoq.
While we were not yet able to obtain an initial dataset from students enrolled in a Programming Languages
course for Fall 2021, we report several hypothesis that could be validated upon the analysis of this data. Up to
this point, there are no records of user studies involving large amounts of data for none of the existing tools.
An analysis centered on user data could improve the overall usability of these interfaces by revealing issues
with their design. In the educational field, the investigation could also help lecturers and staff to understand
the students’ struggles and issues when learning Coq.

Additional Key Words and Phrases: Coq, user-study, data collection, proof assistants

1 INTRODUCTION

Multiple studies proposing user interfaces for proof assistants have been published in the last
decades. In each edition of User Interfaces for Theorem Provers (UITP), it is possible to find a wide
range of experiments for both educational and professional purposes.

Narrowing the scope for the Coq proof assistant, CoqIDE' and ProofGeneral [Aspinall 2000] are
among the most widely adopted interfaces. More recent attempts consider options with support
for Web interfaces, such as jsCoq [Gallego Arias et al. 2017]. The immediate benefit of online
environments like jsCoq is that the user does not need to install any tool in their local machine.
Hence, they are able to use Coq without any setup overhead.

Several projects listed on jsCoq Github page 2 seem to benefit from its portability. In particular,
educational events (Summer/Winter schools, tutorials, workshops) simply embedded the required
code to be used in a particular demonstration on jsCoq. Attendees did not have to dedicate time for
installation and setup issues and could focus primarily on the technical aspect of the lectures. For
instance, it becomes clear that as an online environment, jsCoq has a lot of potential to be adopted
as a powerful educational resource [Warren et al. 2014].

There are multiple other tools and plugins for Coq (VSCoq ? for Visual Studio Code, Coqtail for
Vim * and even a Jupyter Notebook style interface °). Other integrated development environments
or extensions were proposed a while back (such as CogPIE [Roe and Smith 2016] and Company-Coq
[Pit-Claudel and Courtieu 2016]), broadening options for the end user.

2 USER STUDY WITH LARGE DATASETS

Up to this point, there is no record of a large data-centered user study for any of the tools previously
mentioned. The proof-assistant community has records of qualitative studies involving few partici-
pants. As an example, in prior work, Knobelsdorf et al. [2017] performed surveys with small groups
of students to answer the following question: "What kind of problems and issues do students run
into when working with Coq, especially usability issues?". Similarly, Ringer et al. [2020] investigates
the development process of users using proof assistants, but it targets experienced users and also

Thttps://coq.inria.fr/refman/practical-tools/cogide.html
Zhttps://github.com/jscoq/jscoq
3https://github.com/coq-community/vscoq
4https://github.com/whonore/Coqtail
Shttps://github.com/EugeneLoy/coq_jupyter

HATRA °21, October 17-22, 2021, Chicago, USA
2022. ACM ISBN 978-x-xxxx-xxxx-X/YY/MM... $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn


https://doi.org/10.1145/nnnnnnn.nnnnnnn

reports the results of a small data set. Whereas qualitative data is a perfectly valid approach for
usability studies, it would be interesting to have large datasets to observe how new learners of
Coq are performing, and, more importantly, which types of issues they have when using Coq. An
analysis based on big data could also reveal crucial insights for experienced users at the same time.

One way to obtain such a data set is via jsCoq. Contrary to similar attempts for data massive
data collection in IDEs (see the project Blackbox [Brown et al. 2018], for reference), jsCoq is an
online tool, and an asynchronous integration with a node.js server, we can redirect the browser
data to a database (for example, MongoDB °) in order to to generate data entries. Figure 1 shows an
overview of the architecture for collecting user data.

Docker Compose

jsCoq

. Sends a
node.js request for
each event

MongoDB Persists the

event

Fig. 1. Architecture of data collection for jsCogq.

A working setup, ready for collecting anonymized data, can be downloaded from https://github.
com/galois1/jscoq/tree/data-collection-basic. The main README.md file contains a section with
build instructions for this modified jsCoq branch.

At this point, the following events generate new records in the database:

e Starting a new session;

e Any click on the arrows of the main panel (see Figure 2). Each button generates a different
label on the persisted record (namely, "Up", "Down", "To Cursor", "Interrupt Worker", "Reset
Worker");

e Stopping a session.

¥ x

Fig. 2. Buttons in the main control panel that generate a new record in the dataset.

Each record contains a snapshot of the user text (from the scratchpad), a label to indicate which
event happened (start or stop of the worker, or an event from the main panel), the output of the

®https://www.mongodb.com/


https://github.com/galois1/jscoq/tree/data-collection-basic
https://github.com/galois1/jscoq/tree/data-collection-basic

Coq worker (for example, the current goals), the raw log message from jsCoq and a timestamp.
This setting would enable a full reconstruction of the user timeline and their sequence of steps
when using jsCoq. Each record is persisted as a JSON document in MongoDB.

At this time, there is a technical limitation related to the anonymization of the user. We identify
each user by recording their browser user agent. A work in progress feature consists of creating
proper session tokens, which would be more reliable to keep track of users. The other limitation
related to identification is that we cannot locate a returning user in case they terminate a session.
This feature would be achieved upon the implementation of a login mechanism.

The previously described data collection strategy would also enable institutions to deal with
their own privacy restrictions, consent forms, ethics approval, and anonymization mechanisms
according to their norms, as opposed of relying on a centralized database in an external institution.
A similar approach has been described for the LearnOCaml platform ([Canou et al. 2017]) by Ceci
et al. [2021].

3 DATA ANALYSIS AND HYPOTHESIS

The setup described in this paper would enable an incremental dataset of proofs. The persisted
timestamps for each record allow a full reconstruction of the user steps when writing a proof in
Coq. It is difficult to derive conclusions in the data analysis if the motives for a collected sequence
of records are unknown. However, in an educational environment, namely a course or workshop, it
is possible to investigate the user interaction, and track progression in well-known exercises when
writing their programs. The analysis described in the upcoming subsections assumes a group of
users in a beginner, or maximum at intermediate level of familiarity with Cogq.

3.1 Adistinction between usability and learning curve

It would be interesting to identify what are the actual limitations of the interface versus a possible
learning curve from a beginner. To identify sequences of actions that could reveal any sort of usabil-
ity issue, we suggest a particular type of exercise, where a pre-established template with the required
proof steps and the necessary tactics are described. For example, ensure one activity that is nearly
trivial for a user of any level: (* Exercise: Prove the addition for natural numbers is
commutative. You may need to use the following tactics: induction, rewrite, solve

*). After recording and analyzing the sequence of events upon completion of the required proof,
we may determine if the user had issues with the interface given the number of actions they needed
to complete the simple assignment. If the event sequence contains multiple clicks without any
changes in the structure of the proof, that might indicate a poor user experience with the commands
panel or shortcuts.

The same exercise might reveal issues in the learning process. If the sequence of events for
completing the previously described problem holds multiple code changes and brings up misleading
tactics, then the user might be still adapting to Coq’s syntax and to the theoretical foundations of
the course.

3.2 Automated guidance for classes

The data analysis can also be a key for offering automated support for learners. For a given exercise,
it would be possible to analyze and compare the current user sequence with data from other users
who completed the same question in previous editions of the course. After a certain number of
unsuccessful attempts, the platform could make suggestions if the user seems to be stuck. This
feature would require some degree of real-time data analysis.



A complete dataset from students could also provide answers for the following questions: "What
is the average number of steps a user takes to complete this exercise?", "What are the proofs very
few students complete?”, "What are similar misleading event sequences we obtain for difficult
proofs?”, "Which tactics seem to be inadvertently used in a given exercise?".

Analyzing these events would also enable the identification of sequences of tactics that can be
simplified. Once redundant steps are detected, the environment could inform the user to refactor
their code and obtain a better structure for the final proof. These features would serve as a style
checker for the user. Arguably, building this deep analysis in real-time might be challenging; a
large number of pre-processed records of the same theorem could make it possible.

3.3 Reconstructing a sequence of events to detect errors in the platform

Since we record the full sequence of events to complete a proof, it would be feasible to run all
the steps offline and reproduce reported errors. The data collection, in this case, would serve as a
reproducibility asset for the development team.

3.4 Support for the machine learning community

Projects such as CogGym [Yang and Deng 2019]” rely on datasets of proofs extracted from the
Coq Package Index®. The datasets generated with the tool described in this work, on the other
hand, come from users at different levels of expertise. The outcomes could support the extension of
similar existing machine learning projects and could incentivize new ones.

4 DISCUSSION AND FUTURE WORK

This work aims to show the architecture for data collection in jsCoq (still a work in progress during
Summer 2021), as well as some possible hypotheses to be tested. In addition, it investigates ways to
provide students with a better user experience of Coq tools. The results of the data analysis can
guide the path for interface enhancements and possibly lower the entry bar to the topic of proof
assistants.

A number of related ideas and questions may deserve a place for discussion:

e Is it possible to derive lessons from other existing environments for theorem provers, such as
Lean °? The Lean community has a detailed introductory tutorial, which seems efficient for
both beginners in the field, and also for people with prior experience in proofs, but new to
Lean.

e Would it be valid to try a cross-institution effort in the Coq community to improve these
tools? The Blackbox project relied on multiple universities for collecting data and analyzing.

e What other research questions could one ask with such a dataset, besides interface and
educational-related questions?

e What about the usability of offline tools? Would it make sense to have a Language Server
Protocol (LSP) for Coq? There seems to be an open issue on the official project °.

Scripts for cleaning up and analyzing the sequences of events will be an essential part of future
work. We plan to make these assets publicly available.

Lastly, data collection itself is an interactive process. After a batch of analysis, we may be able to
detect other pieces of information to be collected. This work presented a draft of the initial model
we aim to test, but the described record structure may change.

"https://github.com/princeton-vl/CoqGym
8https://coq.inria.fr/packages
*https://leanprover-community.github.io/index.html
Ohttps://github.com/ejgallego/coq-serapi/issues/26



REFERENCES

David Aspinall. 2000. Proof General: A Generic Tool for Proof Development. In Tools and Algorithms for Construction and
Analysis of Systems, 6th International Conference, TACAS 2000, Held as Part of the European Joint Conferences on the Theory
and Practice of Software, ETAPS 2000, Berlin, Germany, March 25 - April 2, 2000, Proceedings (Lecture Notes in Computer
Science, Vol. 1785), Susanne Graf and Michael I. Schwartzbach (Eds.). Springer, 38-42. https://doi.org/10.1007/3-540-
46419-0_3

Neil C. C. Brown, Amjad AlTadmri, Sue Sentance, and Michael Kolling. 2018. Blackbox, Five Years On: An Evaluation of a
Large-scale Programming Data Collection Project. In Proceedings of the 2018 ACM Conference on International Computing
Education Research, ICER 2018, Espoo, Finland, August 13-15, 2018, Lauri Malmi, Ari Korhonen, Robert McCartney, and
Andrew Petersen (Eds.). ACM, 196-204. https://doi.org/10.1145/3230977.3230991

Benjamin Canou, Roberto Di Cosmo, and Grégoire Henry. 2017. Scaling up functional programming education: under the
hood of the OCaml MOOC. Proc. ACM Program. Lang. 1, ICFP (2017), 4:1-4:25. https://doi.org/10.1145/3110248

Alana Ceci, Hanneli C. A. Tavante, Brigitte Pientka, and Xujie Si. 2021. Data Collection for the Learn-OCaml Programming
Platform: Modelling How Students Develop Typed Functional Programs. In SIGCSE °21: The 52nd ACM Technical
Symposium on Computer Science Education, Virtual Event, USA, March 13-20, 2021, Mark Sherriff, Laurence D. Merkle,
Pamela A. Cutter, Alvaro E. Monge, and Judithe Sheard (Eds.). ACM, 1341. https://doi.org/10.1145/3408877.3439579

Emilio Jests Gallego Arias, Benoit Pin, and Pierre Jouvelot. 2017. jsCoq: Towards Hybrid Theorem Proving Interfaces. In
Proceedings of the 12th Workshop on User Interfaces for Theorem Provers, Coimbra, Portugal, 2nd July 2016 (Electronic
Proceedings in Theoretical Computer Science, Vol. 239), Serge Autexier and Pedro Quaresma (Eds.). Open Publishing
Association, 15-27. https://doi.org/10.4204/EPTCS.239.2

Maria Knobelsdorf, Christiane Frede, Sebastian Bohne, and Christoph Kreitz. 2017. Theorem Provers as a Learning Tool in
Theory of Computation. In Proceedings of the 2017 ACM Conference on International Computing Education Research, ICER
2017, Tacoma, WA, USA, August 18-20, 2017, Josh Tenenberg, Donald Chinn, Judy Sheard, and Lauri Malmi (Eds.). ACM,
83-92. https://doi.org/10.1145/3105726.3106184

Clément Pit-Claudel and Pierre Courtieu. 2016. Company-Coq: Taking Proof General one step closer to a real IDE. In
CogPL’16: The Second International Workshop on Coq for PL. https://doi.org/10.5281/zenodo.44331

Talia Ringer, Alex Sanchez-Stern, Dan Grossman, and Sorin Lerner. 2020. REPLica: REPL instrumentation for Coq analysis.
In Proceedings of the 9th ACM SIGPLAN International Conference on Certified Programs and Proofs, CPP 2020, New Orleans,
LA, USA, January 20-21, 2020, Jasmin Blanchette and Catalin Hritcu (Eds.). ACM, 99-113. https://doi.org/10.1145/3372885.
3373823

Kenneth Roe and Scott F. Smith. 2016. CoqPIE: An IDE Aimed at Improving Proof Development Productivity - (Rough
Diamond). In Interactive Theorem Proving - 7th International Conference, ITP 2016, Nancy, France, August 22-25, 2016,
Proceedings (Lecture Notes in Computer Science, Vol. 9807), Jasmin Christian Blanchette and Stephan Merz (Eds.). Springer,
491-499. https://doi.org/10.1007/978-3-319-43144-4_32

Joe Warren, Scott Rixner, John Greiner, and Stephen Wong. 2014. Facilitating human interaction in an online programming
course. In The 45th ACM Technical Symposium on Computer Science Education, SIGCSE 2014, Atlanta, GA, USA, March
5-8, 2014, ]. D. Dougherty, Kris Nagel, Adrienne Decker, and Kurt Eiselt (Eds.). ACM, 665-670. https://doi.org/10.1145/
2538862.2538893

Kaiyu Yang and Jia Deng. 2019. Learning to Prove Theorems via Interacting with Proof Assistants. In Proceedings of the
36th International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA (Proceedings
of Machine Learning Research, Vol. 97), Kamalika Chaudhuri and Ruslan Salakhutdinov (Eds.). PMLR, 6984-6994. http:
//proceedings.mlr.press/v97/yang19a.html


https://doi.org/10.1007/3-540-46419-0_3
https://doi.org/10.1007/3-540-46419-0_3
https://doi.org/10.1145/3230977.3230991
https://doi.org/10.1145/3110248
https://doi.org/10.1145/3408877.3439579
https://doi.org/10.4204/EPTCS.239.2
https://doi.org/10.1145/3105726.3106184
https://doi.org/10.5281/zenodo.44331
https://doi.org/10.1145/3372885.3373823
https://doi.org/10.1145/3372885.3373823
https://doi.org/10.1007/978-3-319-43144-4_32
https://doi.org/10.1145/2538862.2538893
https://doi.org/10.1145/2538862.2538893
http://proceedings.mlr.press/v97/yang19a.html
http://proceedings.mlr.press/v97/yang19a.html

	Abstract
	1 Introduction
	2 User Study with Large Datasets
	3 Data Analysis and Hypothesis
	3.1 A distinction between usability and learning curve
	3.2 Automated guidance for classes
	3.3 Reconstructing a sequence of events to detect errors in the platform
	3.4 Support for the machine learning community

	4 Discussion and Future Work
	References

